Plant and animal glycolate oxidases have a common eukaryotic ancestor and convergently duplicated to evolve long-chain 2-hydroxy acid oxidases.

نویسندگان

  • Christian Esser
  • Anke Kuhn
  • Georg Groth
  • Martin J Lercher
  • Veronica G Maurino
چکیده

Glycolate oxidase (GOX) is a crucial enzyme of plant photorespiration. The encoding gene is thought to have originated from endosymbiotic gene transfer between the eukaryotic host and the cyanobacterial endosymbiont at the base of plantae. However, animals also possess GOX activities. Plant and animal GOX belong to the gene family of (L)-2-hydroxyacid-oxidases ((L)-2-HAOX). We find that all (L)-2-HAOX proteins in animals and archaeplastida go back to one ancestral eukaryotic sequence; the sole exceptions are green algae of the chlorophyta lineage. Chlorophyta replaced the ancestral eukaryotic (L)-2-HAOX with a bacterial ortholog, a lactate oxidase that may have been obtained through the primary endosymbiosis at the base of plantae; independent losses of this gene may explain its absence in other algal lineages (glaucophyta, rhodophyta, and charophyta). We also show that in addition to GOX, plants possess (L)-2-HAOX proteins with different specificities for medium- and long-chain hydroxyacids (lHAOX), likely involved in fatty acid and protein catabolism. Vertebrates possess lHAOX proteins acting on similar substrates as plant lHAOX; however, the existence of GOX and lHAOX subfamilies in both plants and animals is not due to shared ancestry but is the result of convergent evolution in the two most complex eukaryotic lineages. On the basis of targeting sequences and predicted substrate specificities, we conclude that the biological role of plantae (L)-2-HAOX in photorespiration evolved by co-opting an existing peroxisomal protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of chickpea seedling copper amine oxidases by tetraethylenepentamine

Copper amine oxidases are important enzymes, which contribute to the regulation of mono- and polyamine levels. Each monomer contains one Cu(II) ion and 2,4,5-trihydroxyphenylalanine (TPQ) as cofactors. They catalyze the oxidative deamination of primary amines to aldehydes with a ping-pong mechanism consisting of a transamination. The mechanism is followed by the transfer of two electrons to mol...

متن کامل

Production of reactive oxygen species by plant NADPH oxidases.

NADPH oxidases (NOX) catalyze the production of superoxides, a type of reactive oxygen species (ROS). The dramatic induction of ROS production by human NOX2 in activated blood phagocytic cells and its role in promoting pathogen killing has long motivated research in this area (Babior et al., 2002). In plants, the NOX homologs have been named respiratory burst oxidase homologs (Rboh) and they ar...

متن کامل

Update on Production of Reactive Oxygen Species by Rboh Production of Reactive Oxygen Species by Plant NADPH Oxidases

NADPH oxidases (NOX) catalyze the production of superoxides, a type of reactive oxygen species (ROS). The dramatic induction of ROS production by human NOX2 in activated blood phagocytic cells and its role in promoting pathogen killing has long motivated research in this area (Babior et al., 2002). In plants, the NOX homologs have been named respiratory burst oxidase homologs (Rboh) and they ar...

متن کامل

Cloning and characterization of polyphenol oxidase cDNAs of Phytolacca americana.

Two cDNA clones encoding polyphenol oxidases were isolated from a cDNA library constructed from a log-phase suspension culture of Phytolacca americana (pokeweed) producing betalains. The clones exhibit 93 and 86% sequence identity at the nucleotide and deduced amino acid levels, respectively. Both clones contain two copper-binding domains characterized by histidine-rich regions, which are found...

متن کامل

Competitive inhibition of copper amine oxidases by vitamin B hydrochloride in chickpea

Copper amine oxidases (CAOs) catalyse the oxidative de-amination of biogenic amines which are ubiquitous compounds essential for cell growth and proliferation. The enzymes are homodimers containing both topaquinone and a Cu(II) ions as cofactors at the active site of each subunit. After extraction and purification of chickpea (cicer arietinum) amine oxidase by chromatoghraphy, Km and Vmax of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 31 5  شماره 

صفحات  -

تاریخ انتشار 2014